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1. INTRODUCTION { resv
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f)ln this paper/ﬂ% explore the relation between information patterns
phey
and Nash Equilibria in extensive games. By information we mean what

.

players know about moves made by others, as well as by chance. For the
A: {;a er OCpS2s un

most part pure strategies., But in Section 7

Spr3 ¥
behavioral strategies are also examined. It turns out that ther can

R

be modeled as pure strategies of an appropriately enlarged game. ®ur '* -
results, applied to the enlarged game, can then be reinterpreted in terms
of the behavioral strategies of the original game. (e
The extensive game model is of fundamental importance and captures
the interplay between information and decision-making. Yet we find that

its definition, as set forth by Kuhn in [5], is insufficient from certain

points of view. It is unable to incorporate games with a continuum of

players. Also it often makes for an unnaturally complex representation.
For instance, a game in which n players move simultaneously can be

described in the Kuhn framework. But first we would have to order the

players artificially and then have them move in sequence with suitably

*This work was supported by an O.N,R. Grant N00014-77-0518 issued under
Contract Authority NR 047-006, as well as an N,S.F, Grant SES82-10729.
The second author was, in addition, provided a travel grant from the
National Institute of Financial Research (Japan).

This paper is an extensive revision of Part I of [1]. We are
indebted to an anonymous referee, and to David Kreps, for several sharp
suggestions,
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enlarged information sets. If we try to carry this out when n 1is not
finite but a continuum, the difficulty of the procedure becomes clear.
Therefore we are led to develop a variant model which has the feature
that several players can move simultaneously at any position in the game.
Games of the type in [5) are, of course, included as a special case of
our set-up.

In Section 2 we develop our model and illustrate it with an
example. In the rest of the paper, we focus on the effect on Nash Equi-
libria (N.E.) that is caused solely by changes in the information pattern
of an extensive game. In Section 3 we show that if information is re-
fined, without increasing players' knowledge about chance moves,then
the N.E.'s of the coarse game do not disappear. But the converse is
not true: in general there is a rapid proliferation of new N.E.'s.

In the next section, Section 4, we explore conditions under which this
proliferation is arrested. The notion of "no informational influence"
is introduced. It says that if a single player unilaterally changes

his strategy, then the resultant new oufcome tree does not pass through
any other information set of the remaining players than the old one did.
This is a purely set-theoretic condition and can hold not only in non-
atomic, but also in finite, games--see the examples in Section 4. We
prove that if it holds then a Nash outcome of the refined game is also
that of its coarse form, i.e., is not a "new" N,E. brought about by the
increased strategic (threat) possibilities. When we turn to non-atomic
games, no informational influence holds in full force and we get: Nash
outcomes are invariant of the information pattern (see Section 5). This
leads to the "Anti-folk Theorem" in Section 6: the N.,E.'s of a repeated

game are precisely those which are N.E.'s in each stage.




2. EXTENSIVE GAMES IN SIMULTANEQUS MOVE FORM

2.1. Extensive Games: The Definition

An extensive game T in simultaneous move form is a seven-tuple:

{1.}

= (N X
(201) r = (1\ v {C}’ x: Ty {S }XEX, o) {hl}iEN’ i 161\)

Let us explain our symbols. (Unless otherwise stated, all sets are
assumed to be non-empty.)
(i) N is the set of all players, and ¢ denotes chance (¢ € N)
(ii) X 1is the set of all positions in the game, one of which, Xy
is distinguished and represents the start of the game.
(iii) 7 maps X to ZN U{c} . If =(x) is a non-empty subset of
N then it denotes the set of players who move simultaneously
at the position x . If =(x) = {c} then chance moves at x .
(Note that players and chance never move together.) Finally if

n(x) = ¢ then x is an ending position of the game, It will

be convenient to partition X into the three sets:

Xy = {x€X: n(x) €N, n(x) # 0}
Xc = {x€ X : n(x) = {c}}
Xp = {x € X : a(x)=p}

(Note that Xc and XE may be empty.)

(iv) For each x€ X, s*

is a set of functions from (x) to some
set Y* . We assume tnat (X)) = P om s* = # . Given X e s* R
t €Y' and i€ n(x) , denote by (sfi, t) the function from

2(x) to Y* which assigns t to i , and agrees with s

elsewhere. Also let s? stand for sx(i) . Our assumption on

X .
S is:
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(2.2) if s, r €8, then (s¥, r:) € s* for all i € n(x)

Define s? = {sf : s¥€s* for i€ n(x) . Note that, by (2.2),

(2.3) if t€sY and s*€s*, then (s*., t) €s”
1 -1
and, by (2.3),
(2.4) if =w(x) 1is finite, s* = n s* (where 1 denotes

i€n(x) *
Cartesian product).

X . . s
Si is the set of moves available to plaver i at the position

S .
x and S~ is the set of move selections at x by the players

in @(x) that are feasible in the game.

-

(v) ¢ 1links positions to moves. Put X" = XN{x)} . Llet 7 be the

x x X
collection of all finite sequences (s ~, s 1, cees S My with
Xy X
s €5 for k=0,1, ..., m. Then ¢ is a one-to-one
mapping,
¢ : X" - F

such that:

X X
(a) if s €SO, then (s € o(x) ;
X X X

. 0 1 m-1 *n *
) if (s , S 7, ¢eeys , S ) € &(X) , then

X x X
(s 0, s 1, cees S m'1) =z o(xm) :
x0 xm X
(¢) if o¢(x) = (s ', ..., ) and s” € s* , then

X

(s 0

X
,...,Sm, sx)€°(x*) .

Since ¢ 1is one-to-one, we will sometimes identify x with

\
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X X
®(x) , and say that x = (s 0, eee,s ™ for x € X* . This
x0 xm
should cause no confusion. Thus, if &{x) = (s ', ¢¢.,5 ) , wc
. . X X0 *m o x
will write (x, s”) for (s ', ..., , 8°) , etc.

To describe the rest of the game we need to develop some more
terminology. If (x, sx) =y for some s* € s* then we will say that

y immediately follows x and write x-? y . If there exist

Xis eens Xp in X such that x? xl‘I('”Txm?y then y follows
x (or x precedes y ), and we write x<y . (Then < is a partial
order on X with Xy as its unique minimal element. Also note that
for any x € X* the set of all predecessors of x form a path, under
<, from Xy to x ; and ¢(x) 1lists them sequentially, along with
the moves selected at each position that lead from it to its immediate

follower.) Continuing with our definition

(vi) A--possibly finite--sequence {yo, eees¥ys +o+ )} is called a play

if (a) = X

Yo ~ %o
®) ¥y, ? Yyep for all k
(c) Yy € XE if Yq is the last element of the sequence.

(vii) A union of plays A = U pa is said to be an outcome tree (or,
a€d
more simply, an outcome) if

(2.5) for x € A\XE ,

X

§* if w(x) = {c}

{s®€s*: (x, s%) €)=
a singleton set otherwise.
The set of all outcomes depends upon the five-tuple

I = (N, X, m, {8"} .., ¢) and will be denoted A(F ) . Each
- XEX -

hi is simply a real-valued function on A(T_) and gives the
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payoff to player i for any outcome of the game. (Normally chance
moves have probabilities attached to them, with the result that
A gives rise to a probability distribution on plays in T . Then

hi is taken to be the expectation cof a payoff defined a priori

b on plays. See Section 7.)

;i (viii) Ii is a partition of Xi = {x€ X :1€ n(x)} and is called

ii the information partition of player i . If x and y are two
ii positions in the same set of player i's partition

E: (x, yE u€ Ii) , then this means that 1 cannot distinguish

between x and y . It is natural to impose some constraints

in view of this interpretation. First

on the {Ii}iEN

. X Y
(2.6) if x, y€ue€ Ii , then Si = Si .

If this were not so, then i could distinguish intrinsically
between x and y . Given (2.6) we will, without confusion,

talk of the set of moves Sg which is available to i at (each

position in) his information set u ., Next we assume |

(2.7) No play passes through an information set more than
once, i.e,, for any play p and any information set
u we must have |p Nu| <1, where | | denotes

cardinality. (For a discussion of (2.7) see Remark 1.)

This completes the definition of the game T .

. .V § . N N ; - Y - v X - S ’ " -A o v ” " I._..‘..ALAJ ;L‘ MY Y e A_ﬂ“
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Remarks

(1) The condition (2.7) follows from the assumption of perfect

X X
recall (see [5]). Take y in X, o) = (s°, ...,s ™ . Then if
)
i€ "(xﬁ) for some 0 < ¢ <m, s;” = t, and X, € veE Ii , we will

say that "y follows from v via the move t of player i ," and
denote this by (v,t) < y . The perfect recall assumption may now be
i
stated:
x,yEuE]i

(2.8) w (v,t) LY .
(v,t) € x i
i

It says that at any position each player can fully recall the entire
history of his previous information and moves. Technically we need only
the weaker condition (2.7), though we feel that it is more natural to
postulate perfect recall. Indeed wher we restrict ourselves in Section
7 to behavioral--rather than mixed--strategies, then (2.8) is implicitly
assumed. For then, by Kuhn's theorem in [5], behavioral strategies suf-

fice for the analysis of N,E.'s,

2.2. An Example

Consider:

N={1,2,3,4) ; X = {xo, Xy ...,x26} ;

m(xy) = {1,2}, n(x)) = {c} , m(x) ={3,4) for t =2, ceiy 6,
and n(xt) =@ for t =7, .¢.,26
X0

S = {(013 81)9 (01» 82)3 (02’ Bl)’ (02’ 62)} y i-e.,

X0 *o
5.0 = fa), a,} and S, = {8, B,) ;

D N e e e . : .
T O P L PP U - U S e



S 1 {Cl’ c,}
*t ) .
S "= {lvys 810, (vys 85), (vqs 87, (vys 6303, iue.,
X, x,
53 = {yl, yz} and 84 = {51, 62} for t =2, ...,6;
X

st- p for 7, ...,26 ;
2(x)) = (@), B) , 0(x) = ((a), By), ¢))
o()(4) = ((le 82)3 Cz) ’ °(xs) = (0.2, Bl) , etc,;

I, = I2 = {{xo}} , 13 = {{xz, x3}, {x X, x6}} and

4°

I, = {{xz, X3y Xy4» xs}, {xﬁ}} .

The tree of this game is:

T e T Chant Than ] T A TR T T T e - .-
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{ul, uz} , (8B 62) s {Yl, YZ} , {61, 621 are the moves of players

1’
1, 2, 3, 4.

{xo, X5, x7} s {xo, Xps Xg5 X110 X4 x17} are in A(T.)

2.3, Nash Equilibria

: . X
Fix a game T = (N U {c}, X, =, {87} ¢y, ¢, {h,} {Ii}

i“ien’ iEN)

as in Section 2.1, The strategy-set of player i in T 1is made up of

all possible choices of moves available to him in Xi under the proviso
that he must make the same move at positions that are indistinguishable

in his information set. It is the set zi(r) consisting of all maps

o. from X, to U SY which satisfy
1 . 1
x€)\i

. x
(i) oi(x) € Si
(i1) oi(x) = oi(y) if x, v ut Ii .
Thus we can also think of o, as amap o, : I, > U s ; and, with-
i i i ex. i
i

out confusion, o, will be used in both senses. Given a strategy-choice

o= {oi}ieN , where each o, € zi(r) , - abbreviate {oi(x)}iEn(x) by

o(x) for x¢€ XN . Then ¢ 1is called feasible if
(2.9) o(x) € s* for all x€ Xy -

Let I(T) be the set of all feasible strategy-choices in T . We

assume throughout that I(T) is not empty (see Remark 2). Define the

strategy-to-outcome map & : I(T) » A(T ) by:

X0 *m £
(2.10) g(o) = {x€ X : if ¢(x) = (r ', .e.,T ), X € XN’ and
X

0 <g<m thenr o o(xQ)} .
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(Note that chance always picks all of its moves in §&(c) .) From (2.5)
o it easily follows that £(c) is indeed an outcome in A(T_) . But not
5 everything in A(T_) need be achieved by strategies in I(T) . It will

be useful to define A(T) = g(z(T)) , the set of outcomes that are

feasible in I . (In the example of Section 2,2, the outcome
{XO, Xys Xg, X139 X4 x16} is in A(T_) but not in r(pn) J)

Next, given o € I(r) and 1. € I, (T) , let (c]ri) .he

o .
0

same as o0 but with o, replaced by T, - By (2.3), (o|ri) . also
- in I(r) , and therefore our next definition makes sense, Tt r-ategy-

choice o € (I} 1is called a Nash Equilibrium (N.E.) of T i1, Jor

all 1 €N :

'Ei (2.11) h,(&(elt)) < h (6(0)) for all 1, € I (F)

The outcome £(o) produced by an N,E. o of T will be called a Nash

- outcome of T .

Remarks.

(2) If N 1is finite then, by (2.4), it follows that ZI(T) is
non-empty. But in our general set-up we have made no connection between
the information sets and the feasibility condition (2.9), so it is not
:: possible to deduce that I(I') is non-empty. We find it more economical
e to assume non-emptiness here rather than to seek the extra conditions

that will imply it.
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3. PRESERVATION OF NASH OUTCOMES

We will focus on the effect on Nash outcomes that is caused solelv
by changes in the information pattern of the extensive game. For this
purpose we take a pair of games T , r* which are identical except

!

i

Our sharpest result

for their information patterns {Ii}ieN , (I iEN
is in the case when N 1is finite, though many of its corollaries con-
tinue to hold in general. We therefore break up this section into two

parts.

3.1, The Finite-Player Case

For simplicity, denote I.(T) , I(T) , zi(r*) , IL(r") by

*

. , I, I; , L . For o€t , define:

Ri(o) = {x € X, 1 x € E(c]rj) for some Tj € Zj and j € N\{i}}

i.e., Ri(o) is the set of positions that are reachable in T via
unilateral deviations from o by players in N~N{i} . Also define the

*

sets Ii(x) s I;(x) to be the (unique)} sets in Ii , Ii that contain

x . (If x¢ Xi then Ii(x) is understood to be the empty set.)

Proposition 1, Assume

(i) N 1is finite
(ii) o 1is an NJE. of T
(iii) For all i in N :
(a) x, y € R, (o) . .
LX) #1. ("
(b) x,y € g(olt) n X,

* *
for some T, € Ei - Ii(x) = Ii())

1L(x) = 1Y)
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{? Then there is an N.E. 0" of T* such that £*(c*) = £(0) . (Here
% £ , & are the strategy-to-outcome maps in T* , T ).
ii Proof. For any i € N, put
* _ * .
A.1 = {Ii(x) : x € Ri(o)}

BY = ITNAY .
. i i'i
v
- Fix v* € A} . Then, by (iii)(a),
. 3 L€ vt - .
\ (s.1) X, y € v NR (o) =»1.(x)=11()

Therefore we can define the map ¥yt A; > 1 by:
-~ PN S . , *
; wi(\ } = Ii(x) for any x € v' N Ri(o)
: ) * _ * .o

Now construct o = {Oj}iEN by :

o. (V. (v*)) if v* € A?
; (5.2) OO IR B .
- arbitrary if v € B, .
. By (i) and (2.4)

).

(3.3) c¥ €% .

* *

Step 1. £ (07) = £(o) .
fj Since £*(o*) and g(o) are outcome trees, neither £*(g*) ¢ £(0)
. nor £(0) ¢ £*(c*) is possible. Therefore, if £*(c*) # E(g) , there
[ are plays p* and p , with:

p* < £*(o*)~E(0)

P p < £(o)~E"(0M)
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({ Let x be the first position on p , starting from the root Xq
“EB x x
- which is not on p* , i.e., x = &(x) = (s 0, ceesys ™ has the
’ property:
x € pNp
{xps «ecux epn p* .
.ﬂ m m m xm *
iﬁ Clearly a(x) #@ . If n(x) = {c}., then x=(x, s ) €pNp

by (2.5), a contradiction. 1If n(xm) # {c} , then since X" € Ri(c)

for all i € N, we have, by (3.2),

o;(xm) = oi(xm) for all i € n(x™ ,

so x€pNp", again a contradiction. This verifies Step 1. The

Proposition will now follow from

x Step 2. For any 1; in Z: there exists a T in Zj such that

E(OI'rj) = £" (o Irj) .

Define f. :g"(o*[t*) N X, - v s¥ by
] J J xEE*(c*Irg)an J

.‘ _" _‘l _“ "l ..'

(3.4) fj(x) = tj(x)

We claim that for any x, y € 5*(o*|1;)

- (3.5) If x€ £"(c*|1¥) N X, and i € NN{j}, then ol (x) = 0,(X)
X j i i i

- (3.6) If x, y € £ (o Irj) n Xj and Ij(X) =IJ.(y) , then fj(x) =fj(,v) .
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We shall establish (3.5) and (3.6) by induction. If x= (s °, ...,s

say that the length of x from x, is g2+1 , Put:

0

Xt = {x € X : the length of x from x, is < 2},
Lo L ;
X, =X NX" for all k €N.

Denote by (3.5)2, (3.6)2 the statements (3.5), (3.6) but with Xi R

X, replaced by X', x*
j i j

are trivially true., So it suffices to show that

() (5.5)% and (3.6)% = (3.5} and (3.6)**? .

£
j
in Zj . Then, by

Let f§ denote the restriction of fj to 5*(O*IT;) n X By (3.6)

there is an extension of f§ to a strategy

(3.5)2, (3.4) and the definitions of —} , &% and ¢
(3.7) £ (") n X1 E(ol??) nx**1,

By (3.7), it follows that

2+l

(3.8) E*(c*lr;) nX; " eR (o) if i€ WN{j}.

By (3.8) and (3.2), we get

2+1

o;(x) =0, (x) if x€ g*(o*|13) n X and i € W{j} ,

proving (3.5)2*1. Next take x, y € g*(o*|r;) n X?’l with Ij(x) =
By (3.7) and (iii)(b), I*(x) = 1"(y) . Therefore, by (3.4),

fj(x) = fj(y) , proving (3.6)2*1. This establishes (*), and thereby

PP I L. PRI WAL AP U W (AR G TPUr IPE [ VO YD U G 3 -

respectively. Observe that (3.5)o and (3.6)0

11

1.(v)
JL,




(3.5) and (3.6). From (35.6) we see that fj can be extended to a

strategy 1 in Zj . By (3.4) and (3.5), 5*(o*|rg) = £(citj) . This

verifies Step 2.

Q.E.D.

An Examgle

FIGURE 2
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Here

>
n

2 {xo}

b
!

1= {xo, ceey X, )

6

r, " have the solid, broken information patterns

| »4
—
-

@y 5 Yy » Y, are moves of player 1
8, » B, are moves of player 2

£(0) = {XO’ xl’ x7} = play marked with arrows.

Rl(c) = {xo, X1 x2}
Rz(s) = {xo}

c:(cl'rz) N X, ={x;} fork=1,2

C(G\Tl) n Xl = {xo, xl} or {xo, X3, x4} .

( o is any strategy-choice that leads to the marked play &(c) ;

and 1, , <

1 , Tange over all strategies of players 1, 2.)

It can now easily be checked that (iii) (a), (iii)(b) hold for T

9

*

r 4 o. Thus if g(o) is Nash in T, it will also be Nash in T

Remarks

(3) Observe that, by (2.7),
(3.9) No chance moves in the game = (iii)(b) automatically holds.

Thus (iii)(b) says that there is no informational gain regarding chance

moves in going from I to T©'* at o . However, this needs to be true

for player i only under his own unilateral deviations.




2 S Jama an ek aded uu Mg et JEull Sl e et Man WAnth e eaat Junth AnSEINadE Mk Meg) LRl Sk shal B Bt Sgir ettt il M Sunih S /)
- ind - - i) O et e St N A N N . f - -0 A R o ., e R
$ " e Tw'e " m a N P « N DR . . - - - . - .
4 AT - B I
..

:_l‘l.l",l. .

(" (4) Say ©=3Tr* if each I; is a refinement of 1. , for all

i € N . Then
N (3.10) I 37" = (iii)(a) automatically holds.

We can think of (iii)(a) as a weakening of T3 I'* . It requires that,
- in the region reached by others' unilateral deviations, there is no in-

formational loss in going from I' to TI'" at o

(5) The scope of Proposition 1 will become clear later since

many of the propositions that follow will be its simple corollaries when

A N is finite. Let us point out one such immediately. For any game T
i; let n(r) denote the set of all its Nash outcomes. They, by (3.9) and
_ii (3.10), we have
( )
.. N finite
r<r*
&3 (3.11) { either (a) no chance moves » » n(N) n(r*) .
o or (b) (iii)(b) holds at
.: L each ¢ in I J

(This, in the case of condition (a), is essentially the Propositionin [2].)

. - (6) The preceding remark leads one to investigate the possibility

:: of Proposition 1 for the general N case. The difficulty arises in

e .

& deducing (3.3) from (3.2). One would need to make more measurability-

:a type assumptions on the structure of the game to overcome this difficulty.

L For instance consider:




RS Mt - Ac T A A A PR RACT s AT

o 18
Lo
P“ X' < X
{i € n(¥) : Ii(v) € I
(**) B. = {I.(x) : XEX'NX,}, i€EN}= !
i i i .
is in ¢
y € X

Here € is an algebra of subsets of N which includes all singleton

sets, Also require:

n(x) € ¢ for all x € Xy 3
T e n(x)

. . X X X
TEC = the combination (ST’ rn(x)\T) €s” .
sx, r* e s¥

Finally enlarge Ri(o) in (iii)(a) to include positions reached by
player i's own deviations. Then all these conditions together enable
us to go from (3.2) to (3.3), and yield Proposition 1 for general N\ .
Possibly (**) can be deduced from more elementary assumptions on the

tree, though we have not explored this,

3.2. Nestedness of Nash Equilibria under Refinement

We now prove (3.11) without the assumption that N is finite.
First note that if T 3T* there is a natural sense in which

* o . . . * * *
I,el;: simply identify o5 € Iy with o5 € Z; where ci(x) = oi(x)
for all x € Xi .

Proposition 2.1. Assume

1) r3r*
(ii) o is an N,E. of T
(iii) condition (iii)(b) of Proposition 1 holds at o € I .

Then o 1is an N.E. of T" .

. POV W Gl WO G G w .
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Proof. Set o* = o and repeat, mutatis mutandis, the argument in Steps
1 and 2 of the proof of Proposition 1.
Q.E.D.

As an immediate corollary we get a global version of Proposition 2.1:

Proposition 2.2. Assume

(i) r=3r*
(ii) condition (iii)(b) of Proposition 1 holds for every o € C

Then n(T) € n(I*) .

(Note: if there are no chance moves, then (iii), (ii) of Propositions
2.1, 2.2 automatically hold.)

Proposition 2.2 shows that, if we refine information and if there
are no chance moves (or else (ii) holds), then the N.E.'s of the coarse
game are not lost. But there is no dearth of examples to convince one
that, more often than not, there is a rapid proliferation of new N.E.'s.

Consider the three games T. , Pz , T, with the information patterns

1 3

given below., The payoffs are given in'Figure 3.
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FIGURE 5. The Game T3
i3 The Nash plays in each case are marked by X . Those of 1‘£ are pre-
= served in T ., (&£ =1, 2) in accordance with Proposition 2.2.
Zf 4. NO INFORMATIONAL INFLUENCE
ﬁ: We are interested in investigating conditions under which this
;, proliferation of Nash plays is arrested. The next proposition makes
]i an advance in that direction, and constitutes a partial converse to
Proposition 2.1, For T € r* define DJ.(‘E) < 13 by:
A ~ ~
(4.1) D.(0) = {I%(x) : x € €"(0) N X},
4'. J J J

i.e., Dj(sj is the collection of i's information sets through which

the tree £*(0) passes. We say that i has no informational influence

on j at ¢ in Tr* if

*

..: * * * *
\ (4.2) Dj(c ) o Dj(o |1i) for all T €1 .
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] Proposition 3. Assume

1) rsr
(ii) ¢® is an N.E. of T°

(1ii)  each playver has no informational influence (on every other

v R
N LU DR P
N LT T o .

player) at c¢* in Tr°

T e T
TR
P

[

(iv) g*(o™) € A(r) , i.e., E’(0") is feasible in T .

Then there is an N.E. o of T such that E(0) = £*(¢*) . (Indeed

every o € $(r) , for which E(0) = £*(¢*) , 1is an N.E. of T .)

Proof. By (iv) there is a o in I such that £(o) = £*(c*) . Then

it must be that for all i € N :

(4.3) oi(x) 0;(x) if I;(x) € Di(o*) .

Take any 1 € Zj . Since T3 T1* we can define r; € Zj by

(4.4) T;(X) Tj(x) for x € X. .

J

The Proposition will follow if we can show that: E*(c*lr;) = g(olrj)

X
1f * holds, then there is some Xx = &(x) = (s O, ...,sxm) such that

(4.5) x € g(c{tj) and x ¢ 5*(°*|T;)
and

(4.6) Xgs eees X € &(cltj) n E*(o*|r;) .

O’

Clearly, by (4.5) and (2.5,, ﬂ(xm) # {c} . By (4.6) and (iii),

I;(xm) € Di(o*) for all i € n(xm)\{j} . Therefore, by (4.3),
(4.7) oi(xm) = o’i'(xm) if i€ n(x))NG)

and, by (4.4),

A‘;-‘.'_._-‘L‘x‘.'.'.'-...j
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L 23
; (4.8) ) = Ty Af 5 € m(x)
. By (4.7) and (4.8),
. (4.9) (°*|T;) (x) = (Oltj)(xm) .
By (4.6) and (4.9), the position (x, (o*]T;)(xm)) = x and is in
5*(0*113) n ;(c]tj) , contradicting (4.5).
Q.E.D.

To clarify (4.2) consider the games in Figure 6.

[NLN/ N/ N/ )
A b

FIGURE 6
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At X {al, a,} and {61, 82} are the moves of players 1 and 2.

*

The solid, broken lines give the information patterns of I , T

* .
At any o¢* in ¥

which gives the play Xy to x as an

outcome, no player has any informational influence. But if c* gives
the outcome {x0 to ¥y} then player 2 has informational influence on
player 3.

The condition (iii) of Proposition 3 is undoubtedly severe, though
it is a natural one in the context of a "large number of small plavers,"
not necessarily non-atomic. Suppose N = {1, ...,1000} . Let
s$=1{1,...,500} and T = {501, ...,1000} . The game T is as follows,
First all players in S move simultaneously, and each i € S selects
a real number TS in the closed interval [0,1] . The players in S
can observe ) r. . But there is a grid on their scale which does not

i€s
permit very fine measurements. They can tell only that .Z Ty lies in
one of the intervals 1S

[0,10), [10,20), ..., [490,500) . !

After S has moved, then the players in T move simultaneously, and

again each of them can select a real number in [0,1] . Suppose there

is a Nash equilibrium in which 'gsri = 145., (One can easily concoct
i

payoffs to make this so.) Then no player will have any informational

influence at this N.E, The resulting N.E. play is marked in Figure 7.

If any one player in S changes his strategy, this will change the

play but no one in T can observe it because the new play continues

to pass through [140,150) . If we call the below game T©'" and let

I' be its coarsening in which players in T observe nothing (i.e. have
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the information set marked by dotted lines in Figure 7) then all the

conditions of Proposition 3 are met.

*

FIGURE 7, The Games T , T

Remarks

(7) 1f there are no chance moves, then Proposition 3 i

2

corollary of Proposition 1 when N is finite. In this case (iv) of

Proposition 3 holds automatically. (The trouble, with chance moves,
:' is that (iv) may not hold in general.)
N

(8) A stricter version of (4.2) is

* *y * * * *
(4.2) Dj(c ) = Dj(o Iri) for all 1 € I} .

Then we will say that i has strictly no informational influence on

j . In the non-atomic case (Section 5, Lemma 2) it is in fact (4.2)"

that obtains,
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5. NON-ATOMIC GAMES

5.1, The Definition

For simplicity we will assume, throughout Section 5, that there
are no chance moves. (They will be incorporated in Remark 9.) We need
to specialize the set-theoretic structure of T to treat non-atomic
games. The player-set N 1is now equipped with a non-atomic measure.
Precisely, we have a measure space {N,B,y} . B is an o-field of
subsets of N which includes the singleton sets {i} , i € N;
is a non-atomic probability measure on {N,2} . Each Y* (for x€ Xy )
is also assumed to be a measurable space. We now add the following con-
ditions on the congT;fuaﬁrs of T , over and above those in Section 2.1,
(i)-(viii).

(ix) For any x € Xy, n(x) is a non-null1 set in E .

(x) For any x € X\, there is a measurable correspondence X from
n(x) to yX , and s* consists of all measurable selections
from £ , i.e., of all functions g : n(x) -+ Y* which satisfy:

(a) g(i) € £1(i)
(b) g is measurable.

(xi) For any x, y € Xy, the set {i € N:y¢€ Ii(x)} is measurable.

These conditions are fairly innocuous. The sine qua non of the
non-atomic assumption is in the next, and final, condition, It says
that null sets of players and their moves cannot be observed by any of

the others,

1S € 5 is called null if u(S) = 0 ; non-null if it is not null.
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Y Y ¥
(xii) If x = (s 0, s 1, » S m) , Y= (r 0, T 1, ees T m) , and
i € N satisfy (where Yo = %g )
(a) xE €V E Ii - ,v2 €V E Ii , . ,
. ] _ L _ 0z
(b) if AQ, y2 € Vv E Ii , then s; =T
X
. L L .
X y ¢+ 5.7 = 7T, = X = 4
() u({j € n(kl) n n()l) s x5 D = uln( 2)) u(n(>2))
for ¢=0,1, ..., m, then

X €vVE Ii - Y €V E Ii .

This completes our definition of a non-atomic game. Note that (x) easily

implies
(5.1) st = £(i)
(5.2) If =(x) 1is a disjoint union of measurable sets "l(x)

and nz(x) , and g * nl(x) -y » 8 "Z(X) +Y* are

measurable functions which satisfy gl(i) € fx(i) for
i€mnx, g)e £5(i) for i € my(x) , then the
n(x) » y* ,

function g : obtained by putting together

g, and g, » will belong to s* .

It can be checked that (ix)-(xii) are consistent with the earlier
assumptions in (i)-(viii), i.e., there are models of games that satisfy

(i)-(xii). See the example in Section 6.

5.2. Invariance of Nash Plays on Information Patterns

We will establish that if (i)-(xii) hold for a game, then the
MNzsh plays are invariant of the information pattern that the game is
endowed with,

We prepare for this with

Tate RS,
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". Lemma 1. Let T satisfy (i)-(xi). Then A(I ) = A(I)
4 —_— -

- (Note that, since there are no chance moves, outcome trees reduce simply

- to plays.)

L:j Proof. Recall that a play is a sequence of immediate followers, start-

::.f: Xq X

ing with the root Xy Given our identification x = ¢(x) = (s ', ...y, 7},

X9 X X,

- let p=(s , 8 ', e0e85 5 o) €EA(Tr) ., Put U = ] I.(x,) and

K - L . 18

1€-n(x2)

- U=UU . For x€U , let

N [

o Y ) = {1 €n(x) na(x,) : x€I(x)}.

» £ 14

N '

- By (2.7), if £ #2', then v'(x) ny' (x) = p . By (xi), each y'(x
is measurable. Therefore, by (xi), so is

. ’ 2

. a(x) = m(x) - U y"(x)

. 2

Let S be any element of I(Tr') (which is non-empnty by assump-

X tion) and now define o on X, by:

- X .

- sS4 if x€U2 and 1 € y (x) for some 9.;0,

‘ ci(x) =

¥ T,(0 if 1€m(x) but igUyi(x

q L
Since {Yl(x) :2=0,1, ...} are disjoint, this ¢ is well-defined.
It can be checked (inductivelv, starting at X, ) that E(o) =p .

o It remains to verify that o € (') . It is clear that if x, y € u

) for some u € Ii , then oi(x) = c.l(y) . Therefore it is sufficient

N to show o(v) € S* for all x € Xy - If X€ XU, then o(x) = o(x)




.................

.....................

i and o(x) € s* by assumption, If x € UR for some £ > 0, then

kk n(x) is the disjoint union of {yl(x) : 2 =0,1,...} and a(x)
;: X * L

. By (2.6) and (5.1), f7°(i) = £ (i) for i € y"(x) . Also, clearly
U yl(x) c ﬂ(XQ) . But then by construction, the map o(x) on w(x)

L
X

(given by oi(x) for i € n(x) ) coincides with s Y on yl(x) for

all 2 >0 . Hence o(x) is a measurable selection from £ on

-

a U yl(x) . On the other hand, o(x) coincides with o(x) on a(x) |
7 .

: . . . X
and is, a fortiori, a measurable selection from f~ on a(x) . Therc-

fore by (5.2), o(x) € s*

Q.E.D.

Lemma 2. Suppose TI satisfies (i)-(xii), and o € I(I) . Then each

player has strictly no informational influence at ¢ in T .

Proof. Let o = {o(x)}x€x . Consider Tj € zj(r) . Put
N

X, X x Yo ¥ y
0
£(@) = (s %, s Y, ...,s™ ...) and tolty) = (r 0 L1 ....¢’

R

where Yo 2 Xg ¢ It will suffice to show that for any & and any

Z; X, X, Yo Y,
- i€ N}, if x=(s", ...,s ) and y=(r ", ..., ") then (a),
(b), (c¢) of (xii) are satisfied. Make the inductive hypothesis that

we have shown this for 2 =0, 1, ..., k and consider the case1

. X X y y
.- 0 k 0 k
- 2= k¢l ., Now x . =(s",...,s ) and Yee1 = (T 75 ceeyT )

Then, by (xii),

N (d) x

Kol €EVEIL o= ko1 €EveE I, for i€ N5} .

Hence

1For 2 = 0 the hypothesis obviously holds.
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(e) TT(x}w])\{j} = .n('vlul)\{j} ( EAk+1)

Xy Y1
k+1 _ _“k+l .
() S5 =T for i€ Ak+1 .
From (e) and (f):
. X1 Ykal
Ak+1 = {1 € “(xk+1) n n(yk+1) sy =T }

hence, since u({j}) =0

(@ 1A, = w(m(x, ) = ulrly,,)) .

This verifies the hypothesis for £ = k+1 .

Q.E.D.

Fix a six-tuple L = {N, X, n, {87} ¢, {h.}

x€X* i“i€EN

all the assumptions in (i)-(viii), as well as (ix), (x) hold. Denote

} for which

by V(L) the set of all games obtained by adding information patterns
to L subject to (2.6) and (2.7), as well as (xi) and (xii). For any

r € v(L) , recall that n(r) is the set of all its Nash plays,

Proposition 4.1, n(r) = n(T) forany T, T in v(L) .

Proof. Denote by {Ii}

ien {T;}iEN the information patterns in

r, T . For each i € N , let I; be the common refinement of Ii

~ s
and Ii , 1.e.,

e e e . ® T

I; = {v' c X, v &P, vi =vNYV for some v € I, and V€ T;} .

Consider the game I obtained by adding I; to L. We will show

%

that " € T(L) . Clearly I; is a partition of Xi . For any

x,yEXN:{iEN:)'61;(x)}={i€N:ynli(x)nTi(x)}

= {i €EN:YE Ii(x)} n{i€N:yE€ T}(x)} . Since each of the last




two sets is measurable, so is the first, and thus I;
We omit the straightforward check that I; satisfies (
X X X y y y

0 P

take x = (s , s 1, eees S m) , v=(r 0, T 1, S §

(where X, z Yo ) such that

(a*) xR€v*€I;—oy£€v*€I;;

X s

* * - .

(b*) 1If X5 ¥, € v¥ € Ii , then s; = ri ;
(c*) Condition (c¢) of (xii) holds.

In (a*) let v* =v NV for vET '\TGTi. Then

and Yo €EVv' - Yo € v . From this it follows that (a*)

x£ € v E Ii g y2 €Eve Ii ,

i.e., (a) of (xii) holds for Ii . In the same manner
for 'i‘i, and (b) of (xii) holds for both I, , 'i'i
dent of the information pattern and depends only on x
sum up, (a), (b), (¢) of (xii) are satisfied for x ,
both T, T . Then by (xii),

(d*) x € v € Ii s y € Vv E Ii 5

(e*) x€EVET, emyeVeT, .
Let x€w €17, w'=wn¥ for wel , 'JeTi.

and from (d*), y € w . Similarly, y € W . Hence vy
satisfied by T©* . Consequently TI* € V(L) .

n(r) e n(r*) and n(M c n(r*) . Let o* be any N.E.

the wake of Lemmas 1 and 2, we can apply Proposition 3.

By . and i €N

same way, y € w* =» X € w* . This proves that condition (xii) is also

By construction, r=r* and Tar". By Proposition 2.2,

L S N S L O ,L,Akkl%k@

satisfies (xi).

2.7). Finally

*
v E .
X €Ev = X v,

implies:

(a) of (xii) holds
(c) is indepen-
and y . To

y , and i in

Then x € w

€ w* . In the

of . In

This tells us
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that there are N.E.'s o in I and & in T , such that
£(o) = £5 (™) = EXZ) . Since o was arbitrary, n(r*) c n(?) and

n(r*) € n(T) , therefore n(r) = n(r*) (™ .

Q.E.D.

5.5. A Variation on the Theme

The condition (xii) is fairly stringent. Each player has no in-
formational influence on others, not even on a null set. On the other
hand absolutely no assumption was made on the pavoff functions in proving
Proposition 4.1, We now relax (xii) to (xii)* but at the expense of
having to add conditions (xiii) and (xiv) below. Then Proposition 4.1
can still be retrieved, as Proposition 4,2.

Condition (xiii) says, roughly, that if two positions differ only
on account of null sets not containing a particular player i , then

i cannot tell them apart,

X X X Yy Y v
(xiii) If (0 = (s 9, s %, ...,s™ and o(v) = (r 2, ¢, ..., r ™
satisfy, for i € n(x) (with yo 2 X, ),
X, Y
() w({j € m(x) Aomly,) s; =Ty 3 = wlm(x)) = ulnly))

for 2 =0,1, ..., m;

(g) for all 2=0,1, ..., m, 1€ "(xl) e i € ﬂ(yl) ;

X Vs
(h) for all 2=0,1, .eo, m, 1€ n(x,)»s." =1,";
£ 1 1
then i € m(y) and sf = s{ .

The next condition (xiv) is on payoffs. It says that they depend

on plays "modulo" null sets.

)
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Xy X Yo Y
(xiv) If two plays p = (s 0, s 1, ...) and p' = (r 0, T 1, )
satisfy
: € S SR
(1) uw{{j €nlx) nnly) : S5 = 1y ) = uln(x)) = ulnly,))

for all 2 20 ;
(3) i¢€ n(xz) - i € n(yl) , for all 2 >0 ;
* Y

(k) 1i¢€ w(xl) -'si =T, for all 2 > 0 ;

then hi(p) = hi(p')
In the light of (xiii) and (xiv) we weaken (xii) to:

(xii)* No positive informational influence. Each player i has strictly

no informational influence on almost all other players (i.e.

all except a null set).

Let L* be a six-tuple as before, but assume this time that the
assumptions (i)-(viii), (ix)-(xi), as well as (xiii), (xiv) hold. De-
fine V*(L") exactly as V(L) but with (xii) replaced by the weaker

(xii)~*.

Proposition 4.2. n(I) = n(T) for any T, T in 9*(L%)

Proof. It is sufficient to show that for any N.E. ¢ of I, there
is a N.E. @ of T such that (o) = £(9) .
Xy X - -
Let g(o) = (s ", s ', ...) . Select a o in I(r) such that
EIE) = £(0) . This is possible by Lemma 1.
Suppose o is not a N.E. of T . Then there is an ?} € Zi(?)

P and Land

for some i € N such that hi(g(clri)) >h(T(@)) . Let

y=(r ", r 1, ees) (yo = xo) . Then condition (xii)* implies
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u({j € TT(XE) n 'n(yi) cs. %= r.p'}) = u(ﬂ(x£)) = U("T()'k))

for all g2 >0 .

Yo "1 *m
Choose an T € zi(r) such that if o(x) = (t ", t 7, ..oy, t )

satisfies

. . Vg % ,
(£) w({j € nly)) N om(wy) : Tio=ty D o= ulr(y)) = vin(w,))

for all 2=0,1, ..., m;
(g*) for £=0,1, ..., m, i€m(y)eesi€nlw);

y w
e ‘ Lo
0,1, ..., m, if i€ "(“2) then ri ti

(h*) for 1 s

-
E

then ti(x) = ?;(ym+l) . Assumption (xiii) ensures that this choice of

. . 3 3 .
T, is possible. Let E(o|1i) =(q°,q7,...), with a = x; .
From the construction, it is clear that
a y
(i*) forall 2320, u({t€m(a) Naly,) : qj“ - rji})
=u(n(ap)) = winly,)) ;
(j*) forall £ >0, i € n(al) - j € n(yn) ;
e 4 Y
(k*) for all 2 >0, if i€ n(al) , then Q; =T,

Therefore, by (xiv), we have hi(c(olri)) = hi(ETEW?;)) . That is,
hy (5(olt)) = b, (BE]T)) > h,(E(@)) = h;(&(0)) . This is a contradic-

tion.

Q.E.D.

If (xii), (xii)* are violated then Propositions 4.1, 4.2 break
down. Non-trivial counterexamples can easily be obtained by modifying
the "dilemna game with rumour'" in [3].

The careful reader must have noticed that we have defined a Nash




Equilibrium by requiring that alll--as opposed to "almost all'--players

must be optimal in accordance with (2.11). This is because, in our
opinion, the very basis of an N,E, is individual optimization, and

ignoring even a single player would go against the grain of this notion,

Remarks

(9) 1If chance moves are always countable, then an analogue of
Proposition 4.1 (or 4.2) is possible. Take two non-atomic games T ,
r* differing only in information. Suppose (iii)(b) of Proposition 1
holds at all strategies in both directions, i.e., in going from T to
r'* and ™ to I . Then we can show that n(r) = n(r*) . (Naturally,
condition (xiv) has to be strengthened to apply to outcome trees, rather
than just plays.) If chance moves are uncountable then we would need
additional measurability assurptions in the spirit of Remark 6.

(10) An asymptotic version of the non-atomic result has been ex-

amined in part II of [1].

6. THE ANTI-FOLK THEOREM?

Let T be a non-atomic game in strategic form, i.e., n(xo) = N

X X
and every s 0 €S 0 constitutes an ending position. Further assume

that the condition (xiv) holds. In this context that simply says:
X, X, Xg x x X

. . .. _ < 0 0, _ 0
if uy({j € N : sj * rj }1) =0 and S5 T, then hi(s ) hi(r ),

i.e., the payoff to any player depends on his strategy and the measur-

able function of others strategies modulo null sets.

Consider an infinite repetition I of T , in which each plaver

1 . L
That is why the "almost all" variations of assumptions (xii) and (xii)*,
(xiii), (iv) would not suffice for our results.

2For a further discussion of this topic see [4].
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can observe at each stage the entire past history of (a) his own moves
and payoffs, (b) the measurable functions of others' moves, modulo null
sets, The payoffs to plays in r” are assigned by some rule (e.g.,
lim inf , discounted sum)...it doesn't much matter. Then r" satis-
fies (xii), (xii)* (and, also, of course (i)-(xi), (xiii), (xiv)})).

Consider the game r: obtained by coarsening r” as shown in Figure §

@

i.e., each player observes nothing at the end of any stage in rc .

Clearly both Propositions 4.1 and 4.2 apply.

FIGURE 8

This says that the Nash plays of rz are identical with the Nash plays
of r” . If we denote the strategy set of i in T by L then
clearly his strategy set in rz is (Zi)°° , i.e., a strategy for him

is to simply pick an infinite sequence each of whose elements is in

L - It is a short step from this to verify that the Nash plays of
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rE (hence of T ) are tvpically '"small." Indeed if we assign the
payoff to a play of I" by the discounted sum1 of payoffs in each stage,

then it is obvious that

(cl, 02, ...,on, ...) 1is an N.E. of I e each 02 is

an N.E. of T for 2 =1, 2, ... .

This is in sharp contrast with the "folk theorem" ([4], [6]). These
players have enormous informational influence, and a stupendous prolif-

eration of Nash plays is obtained in .

7. BEHAVIORAL STRATEGIES

Our description of extensive games in Section 2 permits us to
model behavioral strategies in T as pure strategies of an associated

game T , in the case when N is finite. The preceding results

then apply to I and can be reinterpreted within T . For ease of ex-

position we shall make the restrictions:

(7.1) X 1is a finite set

(7.2) There are no chance moves.

Note that (7.1) implies that not only N , but also players' moves and
the length of the game are all finite. However only the restriction
that N is finite, is substantial, all the others are made for nota-

tional convenience.

1Assuming this will always exist, e.g. by requiring that the pavoffs
are uniformly bounded in T .
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The idea behind going from T to T is roughly as follows.

Consider the game T where {al, “2} , {81, 82} are the moves of

{1,2}

FIGURE 9

1, 2. The behavioral strategies of 1, 2 are the sets

12 2,1 .2

B = (b, = (b], b)) € Ry : by +b] = 1}
_ o1 2 2 0.1 .2

B, = {b, = (b,, b)) € R} : b, + by =1} .

Construct the game { as follows:

(uzﬁl)'

(aIBI)

% Y (1,2

FIGURE 10

D



At X, players 1, 2 choose 1 s b2 from B1 s B2 . At the resultant
pOSition X, ¢ PiC]\'S (u > 81) » (azs 81) > (0'1, 62) ’ (C"Z, 62' With
e 1 .1 2 .1 1 .2 2 .2 ,

probabilities b1 xb2 s b1 b2 , b1 xb2 , b1 xb2 . The payoff to

the outcome arising from (bl’ bz) in T is

- 2 kL

h.(by, b)) = } Y h, (a B.) where h. is the payoff function
i1 2 k=1 2_1 1 2 L i

ii of i in T . Then the pure strategies of [ correspond exactly to
the behavioral strategies of T . We now extend this picture to the
general case (assuming (7.1), (7.2)).

A behavioral strategy bi of player i 1is a function on X4

which assigns to each x € Xi a probability distribution bi(x) on

X

s*
1

i.e.,

X
beit(x) =1 and b, (x) >0 forall t€s;.

t€S]
i
This must also satisfy bi(x) = bi(y) if x,y€u¢€ Ii . Denote by

Bi the set of all behavioral strategieé of player i . Put B = T Bi
i€eN

Any b € B induces a map Pb : X > R where Pb(x) is the product of
the probabilities on all the arcs, going from X, to x, assigned
according to b . If we restrict Pb to XE then we get a probability

.. B . .
distribution on XE . The payoff to i in T 1is the expectation:

. hi = Z Pb(x)hi(x)
- x€X
. E
';i (Since T has no chance moves and is of finite length, outcomes can be

identified with points in XE and we may view hi as defined on XE )

. A . . B .
We now proceed to construct T which will represent T in

P .;_J..LA-'J
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the format presented in Section 2. A cap will consistently be used to
distinguish constituents of T from T .
(a) The player-sets are identical: N=N=1{1,...,0}.
(b) Tnere is an onto map § : i\ic + X which preserves positions
in the sense: G(Xi) = Xi for i € N and 6(XE) = XE .

(c) Followers are preserved under § , i.e.,

>

>y = §(x) > 6(y) for all X, y € XN U iE .

A

n(6(x)) for all x € X

L[]

(&) 7(X) K

(e) Chance moves come immediately after players' moves, and only
then, i.e.,
1) x€X, §I>§-%'(§-) = {c}
(ii) §(§) = {¢} there is an Xx € XN such that f,? x .
(f) For X € X, the moves in I at X are precisely probability

A
distributions on the pure strategies Sg(x) available to

i in T, i.e.,

8% - {;? ;) L85 =1, sT(1) > 0 for all t} .
tes$ )

(g) Chance moves in f mimic the moves picked with positive

probability in I by the immediately preceding players.

X

In other words, suppose y = (x, 8% and n(y) = {c} .

By (e)(ii) we have X € iN . We require

- {t € sf(x) : §f(t) > o} :
i€n(x)

R PR R .. o -, o N o . o RPN S
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b w 5(2) = (6(X), S)

by (g).)
(1) Since 6 : X, =» Xi is onto, and Ii partitions Xi ,

~ -

6-1 yields the partition Ii of X, , i.e.,

A

I, = {é'l(v) v E Ii} .

It can be checked that, starting from the root io : X, the properties
(a)-(i) give a (unique) recursive construction of the tree of f in
terms of T . To complete the definition of f it now remains to specify
the payoff functions ﬁi , 1i€R.,

There is a one-to-one onto map from behavioral strategies of plaver
i in I to his pure strategies in [ . This map v; * By > Zi(f) is

given by:

wi(bi) =0,
where

oi(x) = bi(d(x)) for all X € Xi .

Put ¢ = (wl, ...,wn) i.e. y maps B to z(f) with

v(b)

There there is some % € £(f) such that £(3) = X . Define

WO, ceeyb ) = (9 (0)), wuuysv, (B)) . Take any 1 € A(F) .
1

Y

(7.3) hiD) = nieT @) .

1h‘e define ﬁi only on z(f) rather than on I(f_) . This is suffi-

cient for the current purpose.

o ]




£(6') for o, o' in I(f) ,

It can be easily checked that if £(0)

then P . P . Therefore ﬁi(i) is invariant of the choice

vie  vlen
of ¢ , and (7.3) serves as a definition of ﬁi . Note that payoffs

are faithfully preserved under ¢ :

B, _.B ~ o A s
hy(®) = h (b,eu,b ) = By (W ®)),enn,u (b)) = by E(0(D)))

Hence
(7.4) b is an N,E. of rB e y(b) is an N.E. of T .

Thus, to analyze behavioral strategy N.E.'s of T , it suffices to con-
sider pure-strategy N.E.'s of .
From the initial pair of games T , T* we derive T , [~
Propositions 1, 2, 3 can be applied to f , f* . Using the isomorphism
¢ , they can then be transferred to rB , r*B . We shall work this
out in detail for some cases. First, for any behavioral strategv-choice
b denote by ;B(b) the support of P_, i.e., EB(b) = {XxX € X : Pb(x) > 0
is the set of positions reached with positive probability under b .
Consider Proposition 3, for instance., To interpret it with behavioral
strategies, take T3 r* ., It follows immediately that
(1)* T3f".
Further suppose
(ii)' o“ is an N,E, of f* .
(iii)' No player has informational influence at ¢* in T©* ,
(iv)' E"(™) € A .
Then, by Proposition 3, any & ¢ £(f) with E(s) = £l6™) 1is an N.E.

~

of T .

w'l(a*) . From our construction of T*

Put b = w'l(a) , b*

-y |




(’ one can easily verify that (iii)' is tantamount to:
)
i;: (7.5) For any j € N :

EE 3 . *B * * . *B * ,
1Ij(x) :x € E*(b7) n xj} =) {Ij(x) : x € £ (b Ic;) n xj}

- for all c; € B; and i € NN{j} .
N To interpret (iv') first note that:
(7.6) ) = @) =P | =P .
v (1) v (T
#ﬁ Therefore (iv)' says:
'ﬁ; (7.7) Pb, = Pd for some d € B ,
Now, using (7.4) and (7.6), we have
r-3r*
- B d, given by (7.7), is
- b* is an N.E. of T - B
- an NJE. of T
o (7.5) and (7.7) hold
=
~ which is Proposition 3 in terms of behavioral strategies. As an example,
o reconsider the game of Figure 6, but with behavioral strategies for
3;' players 3 and 4 in I'*  (the refined game), as shown in Figure 11.
:;f (Arrows indicate pure moves,)
i
s
-"‘
N

T T T P T P R B L N S U A G T .'1
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FIGURE 11

The conditions (7.5) and (7.7) are met at these strategies., Therefore
if the outcome is Nash in the refined game it will also be Nash in the
coarsening,

Next consider Proposition 2.1 for I, T . Condition (iii)

of Proposition 2.1 says (in the context of rB ) that for all i € N :

&: X, y € EB(blci) n X, for some c; € B,
i (7.8) - I3 (x) = I;()
- So we have, translating Proposition 2.1 from T , ©* to TB , r*B :

*

r=<r

B +B

b is an N.E, of T = {b is an N.E. of Tr*°} .

(7.8) holds

-
o
-
o LRy
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Thus, in the coarse game in Figure 12, (7.8) holds at the strategies
indicated. We conclude that if they are Nash in T , then they remain

Nash in T~

, P

s -mewemeoof-

L
/ g \ﬂ//

FIGURE 12

Similarly Proposition 1, applied to T and [* , can be interpreted

) B , .
in r° and 1*B . We leave this to the reader.

MR A




x<Ly
P =(xo,...,xk,...)
A

ACT)

h, @ A(T_) » R

----------

For the reader'

S

used frequently,

n
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LIST OF NOTATIONS

convenience we append a list of notations which are

. , ) X
extensive game = (N U {c}, X, =, {S }xex’ ¢, {hi

Hent e
player-set
chance

set of all positions

root = start of game (xo € X)
set of players who move simultaneously at x , or {c¢} ,
or empty
set of player 1i's positions = {x € X : 1 € 7(x)}
players' positions = U Xi
ieN

positions for chance moves = {x € X : =n(x) = {c}}
ending positions = {x € X : n(x) = @}
set of move-selections at x by n(x) (Note:
S¥ = e n(x) =9 .)
set of moves of 1 at x (for i € =(x) )
path from Xy to x and moves picked along it
y immediately follows x (i.e., y = (x, s*) for
some s € s* )
y follows x ( x precedes y)

.. )
play (16 X, L ... €%, £ |
outcome tree (union of plays on whuk chance Pkn; qu it moyes |

same as I without {hi}iEN and {Ii}ieN

set of outcome trees in T _

payoff function of player i

player 1i's information partition on Xi

PP NPT P U AP Wy WP U U I A S . ) ' da e A e




-0 z(r)
.\: o
\‘

' oi

£ : Z(T) > A(T)

A(T) = g(2(T))

‘ 1 11 (X)
n(r)
- rsrt
= r®
E: T
) B.
i : 1
b B
n:: b
-
b.
i
.
s
.

strategv-set of player i in T
strategv-selections feasible in T
element of I(T)

player 1i's strategy in o
strategy-to-outcome map

set of outcomes feasible in T

information set of player i that contains x ( Ii(x)
is empty if x € Xi )
set of Nash outcomes in T

* . Py . .
T is an information-refinement of T

the game with behavioral-strategies on T

~

B
so that T  corresponds to T
I' we consider only pure strategies)

enlargement of T
(Note: 1in

set of behavioral strategies of i in T
product of Bi over i € N
element of B

player i's

behavioral strategy in b
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